How to Solve the Integral of (x^2024 - 1) / (x^506 - 1)?
Solving the Integral: ∫ (x^2024 - 1) / (x^506 - 1) dx
The integral we are solving is:
∫ (x^2024 - 1) / (x^506 - 1) dx
We start by simplifying the expression using polynomial division. Dividing x2024 - 1 by x506 - 1 gives:
x2024 - 1 = (x506 - 1) * (x1518 + x1012 + x506 + 1)
This allows us to rewrite the integral as:
∫ (x1518 + x1012 + x506 + 1) dx
Now, we can integrate each term:
- ∫ x1518 dx = x1519 / 1519
- ∫ x1012 dx = x1013 / 1013
- ∫ x506 dx = x507 / 507
- ∫ 1 dx = x
Thus, the final result is:
x1519 / 1519 + x1013 / 1013 + x507 / 507 + x + C
Where C is the constant of integration.
Comments
Post a Comment